
Network Virus Detection
Using Associative SIMD 

Processors

Kenneth Atchinson
Kevin Schaffer

Dr. Robert A. Walker

ASC Processor Group
Computer Science Department

Kent State University



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Today’s reality – computer viruses exist

 Over 70,000 viruses have been discovered, but only a 
few are in the wild, and a smaller number that cause 
significant damage

 Defending systems from computer viruses has 
become top priority in maintaining system 
functionality and data integrity

 To effectively defend, virus detection is the key

 Viruses live in files that we use – this is where we 
must look for them

Introduction



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Typical uninfected program file 
contains executable instructions and 
data variables

 Viruses attach themselves to program 
files while they are in main storage 
(e.g. hard disk), infecting them

 Multiple ways viruses can attach to 
program files

Normal Program File

Uninfected
Program



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Virus code is written to the beginning 
of the program file

 Typically destroys the original 
program since the virus overwrites the 
original program code

 This virus doesn’t change file size, 
thus harder to catch unless you 
“look” for the virus code

Overwriting Virus

Unusable 
Program 

Data

Virus



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Virus code is appended to the end of 
the program file

 A small stub is written at the top of 
the program file, so that the virus is 
executed at the start of the program

 Stub spawns virus code off as 
another process, then continues with 
original program

 This virus increases the size of the 
program file, so visible detection is 
possible by simply looking for larger 
program files

Appending Virus

Infected
Program

Virus



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Entire program file is a virus, which is 
pretending to be a useful program

 File size more than likely is different than 
the original program file

 Original program code is destroyed and 
can never be recovered

Trojan

Virus



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 A program file that has a virus is said to be an 
infected file

 Regardless of structure, a virus in a program file can 
be recognized by the code in which it contains

 Virus code can be expressed as a pattern, similar to 
regular expressions

 Detection is done via pattern recognition algorithms, 
where known virus code is compared with program 
file

 Detection program (Anti-Virus) is called a Virus 
Scanner

Observations



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Sample virus code of known viruses is compressed 
and optimally stored for Virus Scanner in what is 
called Virus Signature

 Virus Signatures are stored in a Virus Definition File 
(a database of virus signatures) 

 A look at where we currently detect viruses
 Detection on Storage Media
 Detection over a Network

Observations



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Infected files are stored on the file system, virus 
detection occurs inside of disk blocks

 Virus detection on storage media is I/O intensive 
since we have to read disk blocks and scan them for 
virus patterns

 Virus detection is a single threaded process where 
program file contents are analyzed against all virus 
signatures

 Time to detect virus tends to be long, but not a factor 
since there is not any time constraints for completion

Detection on Storage Media 



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Infected files are transmitted over a network, thus 
virus detection occurs inside of the TCP/IP packet 
payload

 Virus detection over a network uses the same 
methods/algorithms employed by their storage media 
detection designs counterparts, however 
 Time to detect virus is shorter since data must be 

transmitted quickly (minimizing store/forward delay)
 Reduce number of patterns to check, thus detection is 

not as thorough as on storage media

 I will explore this area in my research

Detection over a Network



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Virus Detection Algorithms

 Is Exact Match the only solution?

 Viruses can be polymorphic: the virus code is slightly 
modified during program file infection as to make it 
harder to detect

 Typical polymorphism for virus code is injection of 
NOOPs in code, increasing virus code size without 
changing virus code operation

 Virus signatures must account for the possibility of 
virus polymorphism

 Two detection algorithms: Sequence Alignment and 
Longest Common Subsequence (LCS)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Procedure of comparing 2 or more sequences

 Searches series of individual character pattern in the 
same order in the sequence

Sequence Alignment

GGHSRLILSQLGEEG.RLLAIDRDPQAIAVAKT

GGHAERFL.E.GLPGLRLIGLDRDPTALDVARS
|||::::| : |::| ||:::||||:|:|||::



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Issue: If sequences do not “line up” exactly, detection 
will provide a false negative (e.g. Polymorphism)

Sequence Alignment

GGHSRLILSQLGEEG.RLLAIDRDPQAIAVAKT

KKGGHAERFL.E.GLPGLRLIGLDRDPTALDVA
:::::::::::::::::|:::::::::::::::



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Find a common string for both the sequences 
preserving symbol order

 Detection now possible without concern of sequence 
alignment

 Polymorphism does not affect detection since non-
matching data sequences are skipped by algorithm 

Longest Common Subsequence (LCS)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Implement a generic hardware design using 
Commercial Off the Shelf Components (COTS)
 Use a general purpose CPU
 All work done via programs
 Software emulating hardware = slow

 Implement a custom hardware design
 Custom hardware provides speedup to execute 

algorithm in required time frame
 Use Field Programmable Gate Arrays (FPGAs) instead 

of Application Specific Integrated Circuit (ASIC) to 
implement hardware

 Hardware harder to change than software

Implementation Choices



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

COTS CPU
COTS CPU based design 

running virus detection 
algorithm

COTS CPU also handles 
network I/O

Network
COTS
CPU

Advantages
Flexibility of system achieved via software

Disadvantages
Costly solution – expensive COTS CPU

Slowest system due to COTS CPU being overloaded with virus 
scanning and handling network I/O



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Dedicated Hardware
Complete System on a Chip

Virus Scanner implemented 
in FPGA

FPGA also has to manage 
Network I/O

FPGA

Virus Scanning 
Engine

Network

Network I/O
And System
Supervisor

Advantages
Very customized design, optimized for performance

Disadvantages
Least flexible to runtime changes



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

COTS CPU with 
Coprocessor

Semi-Custom Design of 
COTS Components and 
FPGA

COTS CPU to handle high 
order processing of data

Virus scanner implemented 
in FPGA, speeding up 
virus detectionFPGA

Virus Scanning 
Engine

NetworkCOTS
CPU

Advantages
COTS CPU gives design flexibility via software

Virus Scanning Engine speeds up virus detection 

Disadvantages
I/O Bottleneck – data to/from Virus Scanning Engine

Expensive – system is expensive CPU + FPGA



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Softcore CPU with 
Coprocessor

Complete System on a Chip

General Purpose CPU 
implemented in FPGA

Virus Scanner implemented 
in FPGA

FPGA

Virus Scanning
Engine

Network

Softcore
CPU

Advantages

Softcore CPU – design with just enough processor for the job

Virus scanner engine can be specifically designed/programmed to 
detect particular viruses

Cost effective – all in one System on a Chip



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

My Implementation
Altera FPGA

NIOS II Softcore processor

Associative SIMD processor

Shared memory between 
NIOS II and Associative 
SIMD processors

Linux OS Environment

C programming supportFPGA

ASC SIMD

Network

NIOS II
CPU

Advantages
Kent State Associate SIMD (ASC) – modification of conventional 

SIMD architecture that uses specially designed Associative PEs

NIOS II + Linux + C – proven development/support environment

Shared memory tightly couple processors, reduces I/O bottlenecks

Shared 
Memory



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Typical SIMD Array

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Control
Unit
(CU)

Single Instruction 
Multiple Data 
(SIMD) 
Architecture

A Processing Element 
(PE) is a simple 
Processor (ALU, 
Registers) with 
private memory 
store

PE elements receive 
instructions from 
Control Unit

A single instruction is 
then executed over 
multiple (different) 
data



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Associative SIMD Array

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Memory APE

Assoc.
Control

Unit
(CU)

Associative SIMD 
(ASC)

Each PE is an 
Associative PE, 
where PEs have a 
special responder 
bit

The responder bit can 
then be used to 
selectively 
engage/not engage 
PE to continue 
executing 
instructions from 
Control Unit



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Assoc.
Control

Unit
(CU)

54686973 20697320 61206E65 77207465

Each APE is loaded with a TCP/IP payload data, and performs a 
Longest Common Subsequence search.  LCS algorithm set to 
search for data 7669727573.

APER

Associative Search using LCS

6f752066 20736e64 20486179 454c4c4f APER

78742066 696c6576 57692072 75736c20 APER

73656172 63682066 6f722074 68652077 APER

64206f72 76697275 7320616e 64206966 APER

7669727573



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Assoc.
Control

Unit
(CU)

54686973 20697320 61206E65 77207465

APEs that have a successful search will set  the “R” responder 
field.

APER

Associative Search using LCS

6f752066 20736e64 20486179 454c4c4f APER

78742066 696c6576 57692072 75736c20 APER

73656172 63682066 6f722074 68652077 APER

64206f72 76697275 7320616e 64206966 APER

7669727573



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Assoc.
Control

Unit
(CU)

54686973 20697320 61206E65 77207465

Now for responders only, search for 696c.  Only responders to 
second search will set “R” bit.

APER

Associative Search using LCS

6f752066 20736e64 20486179 454c4c4f APER

78742066 696c6576 57692072 75736c20 APER

73656172 63682066 6f722074 68652077 APER

64206f72 76697275 7320616e 64206966 APER

696c



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Algorithm Performance

 LCS algorithm runs in O(nm) time, where n is the 
length of the text string, and m is the length of pattern 
string

 If we have K text strings to check, our run time is 
O(knm)

 If we have K parallel processors, then our run time is 
back to O(nm), a savings of O(k)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Conclusion

 Viruses a growing threat to computer security

 Network virus detection increasingly becoming an 
important part of system security

 Using custom hardware solves timing requirements

 Using FPGAs gives flexibility in changing design to 
meet problem

 Using Associative SIMD processors solves pattern 
detection problem in parallel

 Speedup improvement of O(k) for K element SIMD



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

 Introduction

 Structure of a File Virus

 Virus Detection on Storage Media and Network

 Algorithms for Detecting Viruses

 Implementation Choices

 Implementation

 System Performance

 Conclusion

 Future Work

Outline



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Future work

 Implement KSU PE VHDL code with Altera NIOS II 
code
 Use NIOS II Softcore Processor to perform high order 

functions of getting data from network for analysis
 NIOS II will run uCLinux, a Linux OS
 NIOS II will be able to access KSU PE memory to 

enable fast data loading (remove I/O bottlenecks)

 Implement Serial LCS on KSU PEs
 Determine “best” LCS match for this application.  Note: 

“best” may not be longest (longer matches improves 
detection accuracy)



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Future work

 Experiment with target quantity vs. pattern quantity 
searches
 Target quantity - tests lots of data against one pattern 

simultaneously 
 One virus signature constant in all PE memories, 

multiple TCP/IP payloads are written to PE 
memories

 Pattern quantity - tests one data against lots of 
patterns simultaneously
 Multiple virus signatures are constants in PE 

memories, write TCP/IP payload in all PE memories 
to check



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Questions



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Altera DE2 Development Board



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

Quartus SOPC Builder



Kenneth Atchinson - Kevin Schaffer - Robert A. Walker

NIOS II
CPU

LCD
Display

Timer
JTAG
UART

RAM

Ethernet
LED

Display

PE PEPE PE

Associative
Control Unit

ASC SIMD


